
Network Virus Detection
Using Associative SIMD 

Processors

Kenneth Atchinson
Kevin Schaffer

Dr. Robert A. Walker

ASC Processor Group
Computer Science Department

Kent State University



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Today’s reality – computer viruses exist

 Over 70,000 viruses have been discovered, but only a 
few are in the wild, and a smaller number that cause 
significant damage

 Defending systems from computer viruses has 
become top priority in maintaining system 
functionality and data integrity

 To effectively defend, virus detection is the key

 Viruses live in files that we use – this is where we 
must look for them

Introduction



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Typical uninfected program file 
contains executable instructions and 
data variables

 Viruses attach themselves to program 
files while they are in main storage 
(e.g. hard disk), infecting them

 Multiple ways viruses can attach to 
program files

Normal Program File

Uninfected
Program



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Virus code is written to the beginning 
of the program file

 Typically destroys the original 
program since the virus overwrites the 
original program code

 This virus doesn’t change file size, 
thus harder to catch unless you 
“look” for the virus code

Overwriting Virus

Unusable 
Program 

Data

Virus



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Virus code is appended to the end of 
the program file

 A small stub is written at the top of 
the program file, so that the virus is 
executed at the start of the program

 Stub spawns virus code off as 
another process, then continues with 
original program

 This virus increases the size of the 
program file, so visible detection is 
possible by simply looking for larger 
program files

Appending Virus

Infected
Program

Virus



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Entire program file is a virus, which is 
pretending to be a useful program

 File size more than likely is different than 
the original program file

 Original program code is destroyed and 
can never be recovered

Trojan

Virus



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 A program file that has a virus is said to be an 
infected file

 Regardless of structure, a virus in a program file can 
be recognized by the code in which it contains

 Virus code can be expressed as a pattern, similar to 
regular expressions

 Detection is done via pattern recognition algorithms, 
where known virus code is compared with program 
file

 Detection program (Anti-Virus) is called a Virus 
Scanner

Observations



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Sample virus code of known viruses is compressed 
and optimally stored for Virus Scanner in what is 
called Virus Signature

 Virus Signatures are stored in a Virus Definition File 
(a database of virus signatures) 

 A look at where we currently detect viruses
 Detection on Storage Media
 Detection over a Network

Observations



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Infected files are stored on the file system, virus 
detection occurs inside of disk blocks

 Virus detection on storage media is I/O intensive 
since we have to read disk blocks and scan them for 
virus patterns

 Virus detection is a single threaded process where 
program file contents are analyzed against all virus 
signatures

 Time to detect virus tends to be long, but not a factor 
since there is not any time constraints for completion

Detection on Storage Media 



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Infected files are transmitted over a network, thus 
virus detection occurs inside of the TCP/IP packet 
payload

 Virus detection over a network uses the same 
methods/algorithms employed by their storage media 
detection designs counterparts, however 
 Time to detect virus is shorter since data must be 

transmitted quickly (minimizing store/forward delay)
 Reduce number of patterns to check, thus detection is 

not as thorough as on storage media

 I will explore this area in my research

Detection over a Network



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Virus Detection Algorithms

 Is Exact Match the only solution?

 Viruses can be polymorphic: the virus code is slightly 
modified during program file infection as to make it 
harder to detect

 Typical polymorphism for virus code is injection of 
NOOPs in code, increasing virus code size without 
changing virus code operation

 Virus signatures must account for the possibility of 
virus polymorphism

 Two detection algorithms: Sequence Alignment and 
Longest Common Subsequence (LCS)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Procedure of comparing 2 or more sequences

 Searches series of individual character pattern in the 
same order in the sequence

Sequence Alignment

GGHSRLILSQLGEEG.RLLAIDRDPQAIAVAKT

GGHAERFL.E.GLPGLRLIGLDRDPTALDVARS
|||::::| : |::| ||:::||||:|:|||::



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Issue: If sequences do not “line up” exactly, detection 
will provide a false negative (e.g. Polymorphism)

Sequence Alignment

GGHSRLILSQLGEEG.RLLAIDRDPQAIAVAKT

KKGGHAERFL.E.GLPGLRLIGLDRDPTALDVA
:::::::::::::::::|:::::::::::::::



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Find a common string for both the sequences 
preserving symbol order

 Detection now possible without concern of sequence 
alignment

 Polymorphism does not affect detection since non-
matching data sequences are skipped by algorithm 

Longest Common Subsequence (LCS)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Implement a generic hardware design using 
Commercial Off the Shelf Components (COTS)
 Use a general purpose CPU
 All work done via programs
 Software emulating hardware = slow

 Implement a custom hardware design
 Custom hardware provides speedup to execute 

algorithm in required time frame
 Use Field Programmable Gate Arrays (FPGAs) instead 

of Application Specific Integrated Circuit (ASIC) to 
implement hardware

 Hardware harder to change than software

Implementation Choices



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

COTS CPU
COTS CPU based design 

running virus detection 
algorithm

COTS CPU also handles 
network I/O

Network
COTS
CPU

Advantages
Flexibility of system achieved via software

Disadvantages
Costly solution – expensive COTS CPU

Slowest system due to COTS CPU being overloaded with virus 
scanning and handling network I/O



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Dedicated Hardware
Complete System on a Chip

Virus Scanner implemented 
in FPGA

FPGA also has to manage 
Network I/O

FPGA

Virus Scanning 
Engine

Network

Network I/O
And System
Supervisor

Advantages
Very customized design, optimized for performance

Disadvantages
Least flexible to runtime changes



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

COTS CPU with 
Coprocessor

Semi-Custom Design of 
COTS Components and 
FPGA

COTS CPU to handle high 
order processing of data

Virus scanner implemented 
in FPGA, speeding up 
virus detectionFPGA

Virus Scanning 
Engine

NetworkCOTS
CPU

Advantages
COTS CPU gives design flexibility via software

Virus Scanning Engine speeds up virus detection 

Disadvantages
I/O Bottleneck – data to/from Virus Scanning Engine

Expensive – system is expensive CPU + FPGA



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Softcore CPU with 
Coprocessor

Complete System on a Chip

General Purpose CPU 
implemented in FPGA

Virus Scanner implemented 
in FPGA

FPGA

Virus Scanning
Engine

Network

Softcore
CPU

Advantages

Softcore CPU – design with just enough processor for the job

Virus scanner engine can be specifically designed/programmed to 
detect particular viruses

Cost effective – all in one System on a Chip



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

My Implementation
Altera FPGA

NIOS II Softcore processor

Associative SIMD processor

Shared memory between 
NIOS II and Associative 
SIMD processors

Linux OS Environment

C programming supportFPGA

ASC SIMD

Network

NIOS II
CPU

Advantages
Kent State Associate SIMD (ASC) – modification of conventional 

SIMD architecture that uses specially designed Associative PEs

NIOS II + Linux + C – proven development/support environment

Shared memory tightly couple processors, reduces I/O bottlenecks

Shared 
Memory



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Typical SIMD Array

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Control
Unit
(CU)

Single Instruction 
Multiple Data 
(SIMD) 
Architecture

A Processing Element 
(PE) is a simple 
Processor (ALU, 
Registers) with 
private memory 
store

PE elements receive 
instructions from 
Control Unit

A single instruction is 
then executed over 
multiple (different) 
data



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Associative SIMD Array

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Assoc.
Control

Unit
(CU)

Associative SIMD 
(ASC)

Each PE is an 
Associative PE, 
where PEs have a 
special responder 
bit

The responder bit can 
then be used to 
selectively 
engage/not engage 
PE to continue 
executing 
instructions from 
Control Unit



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Assoc.
Control

Unit
(CU)

54686973 20697320 61206E65 77207465

Each APE is loaded with a TCP/IP payload data, and performs a 
Longest Common Subsequence search.  LCS algorithm set to 
search for data 7669727573.

APER

Associative Search using LCS

6f752066 20736e64 20486179 454c4c4f APER

78742066 696c6576 57692072 75736c20 APER

73656172 63682066 6f722074 68652077 APER

64206f72 76697275 7320616e 64206966 APER

7669727573



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Assoc.
Control

Unit
(CU)

54686973 20697320 61206E65 77207465

APEs that have a successful search will set  the “R” responder 
field.

APER

Associative Search using LCS

6f752066 20736e64 20486179 454c4c4f APER

78742066 696c6576 57692072 75736c20 APER

73656172 63682066 6f722074 68652077 APER

64206f72 76697275 7320616e 64206966 APER

7669727573



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Assoc.
Control

Unit
(CU)

54686973 20697320 61206E65 77207465

Now for responders only, search for 696c.  Only responders to 
second search will set “R” bit.

APER

Associative Search using LCS

6f752066 20736e64 20486179 454c4c4f APER

78742066 696c6576 57692072 75736c20 APER

73656172 63682066 6f722074 68652077 APER

64206f72 76697275 7320616e 64206966 APER

696c



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Algorithm Performance

 LCS algorithm runs in O(nm) time, where n is the 
length of the text string, and m is the length of pattern 
string

 If we have K text strings to check, our run time is 
O(knm)

 If we have K parallel processors, then our run time is 
back to O(nm), a savings of O(k)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Conclusion

 Viruses a growing threat to computer security

 Network virus detection increasingly becoming an 
important part of system security

 Using custom hardware solves timing requirements

 Using FPGAs gives flexibility in changing design to 
meet problem

 Using Associative SIMD processors solves pattern 
detection problem in parallel

 Speedup improvement of O(k) for K element SIMD



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Future work

 Implement KSU PE VHDL code with Altera NIOS II 
code
 Use NIOS II Softcore Processor to perform high order 

functions of getting data from network for analysis
 NIOS II will run uCLinux, a Linux OS
 NIOS II will be able to access KSU PE memory to 

enable fast data loading (remove I/O bottlenecks)

 Implement Serial LCS on KSU PEs
 Determine “best” LCS match for this application.  Note: 

“best” may not be longest (longer matches improves 
detection accuracy)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Future work

 Experiment with target quantity vs. pattern quantity 
searches
 Target quantity - tests lots of data against one pattern 

simultaneously 
 One virus signature constant in all PE memories, 

multiple TCP/IP payloads are written to PE 
memories

 Pattern quantity - tests one data against lots of 
patterns simultaneously
 Multiple virus signatures are constants in PE 

memories, write TCP/IP payload in all PE memories 
to check



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Questions



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Altera DE2 Development Board



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Quartus SOPC Builder



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

NIOS II
CPU

LCD
Display

Timer
JTAG
UART

RAM

Ethernet
LED

Display

PE PEPE PE

Associative
Control Unit

ASC SIMD


